Alexandria Engineering Journal (2019) 58, 14711482

HOSTED BY

N )

Alexandria University

Alexandria Engineering Journal

www.elsevier.com/locate/aej
www.sciencedirect.com

ORIGINAL ARTICLE

Fuzzy rough bi-level multi-objective nonlinear
programming problems

Check for
updates

ML.A. Elsisy, M.A. El Sayed "

Department of Basic Engineering Sciences, Faculty of Engineering, Benha University, ElQalyoubia, Egypt

Received 16 July 2019; revised 1 September 2019; accepted 1 December 2019
Available online 14 December 2019

KEYWORDS Abstract Fuzzy rough bi-level multi-objective nonlinear programming problem (FRBMNPP)

moved toward becoming rise normally in various real applications. In this article we develop bi-
level multi-objective nonlinear programming problem (BMNPP), in which the objective functions
have fuzzy nature and the constraints represented as a rough set. The fuzzy objective functions con-

Bi-level optimization;
Multi-objective program-

ming;

Rough set; verted into deterministic ones by utilizing the o-cut methodology. Thus the FRBMNPP become a
Fuzzy sets; rough BMNPP which is transformed into two problems corresponding to the upper and lower
TOPSIS;

approximation models. The Karush-Kuhn-Tucker (KKT) method and two models of technique
of order preferences by similarity to ideal solution (TOPSIS) approach are developed to solve such
problem. At last, applicability and efficiency of the two TOPSIS models and KKT method, sug-

gested in this study, are presented through an algorithm and a numerical illustration.
© 2019 The Authors. Published by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria
University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).

Karush-Kuhn-Tucker
(KKT) method

1. Introduction data [1,7]. For that, BL-DMP mechanisms have been
progressed to recognize compromises between the decision
makers (DM) in a hierarchical community and activate their

Bi-level decision making problem (BL-DMP) is rigorously Akt o e : o
individual decision gradually for optimizing their objectives

studied and focused with considerable research interest in

literature [5,6,9,17] because of its wide range of applications
in numerous important fields like engineering, science,
finance, management, banking, economics, agriculture and
so forth [6].

BL-DMP has newly manifested in decentralized depart-
ment era and has become so convoluted, especially with the
elaboration of economic integration and in the era of massive
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[1-4],[6,7,19]. Ranarahu et al. [31], proposed a method for
treating a multi-objective BL-DMP. Fuzzy goal programming
(FGP) algorithm was developed by Baky et al. [7], for solving
fuzzy BL-DMP. Youness et al. [34], exhibited Fuzzy integer
BL-DMP. Ren [30], developed a method to deal with the fully
fuzzy BL-DMP by applying interval programming notions.
Sakawa et al. [33], suggested interactive fuzzy programming
for two-level linear fractional programming issue under fuzzi-
ness. Multi-level decision-making problems (ML-DMP) were
as of late concentrated by Chen and Chen [9],. Pramanik
and Roy [27], proposed FGP models for solving ML-DMP.
Lachhwani [17], tackled a solution for ML-DMP based on
FGP approach. An interactive approach for fractional
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ML-DMP under fuzziness displayed by Osman et al. [25].
Parametric notions of fractional fuzzy ML-DMP has been
introduced by Osman et al. [23].

An essential group of algorithms utilizes the KKT condi-
tions to represent the BL-DMP as a standard nonlinear pro-
gramming problem [2,13]. KKT approach is a prevalent
technique to handle programming issues with hierarchical
forms. The basic concept of the KKT is that it changes each
follower’s problem with its optimality conditions and subjoins
the obtained system to the leader’s problem [2,14,15].

TOPSIS, is one of celebrated multiple criteria decision mak-
ing (MCDM) manners, based on the concept that the selected
alternate ought to the briefest separation from the positive
ideal solution (PIS) and the most remote from the negative
ideal solution (NIS) [3.4],[6]. TOPSIS exchanges the m-
objectives which are conflicting and non-commensurable, into
a bi-objective commensurable and most of time conflicting
functions. It was first developed by Lai et al. [18], for solving
a multiple attributes issue. Chen [10], extended the concept
of TOPSIS to solve multi-person MCDM problems in a fuzzy
domain. Large scale multi-objective non-linear programming
problem via TOPSIS was exhibited by Abo-Sinna et al. [4],.
A modified TOPSIS method presented by Baky and Elsayed
[8], for BL-DMP with vague numbers. Baky and Abo-Sinna
[6], extended the TOPSIS approach for BL-DMP.

Rough set theory (RST) can be regarded as a new mathe-
matical tool for imperfect data analysis introduced by Pawlak
[29,30], to deal with uncertainty. It has many applications
found in numerous fields such as decision support, engineer-
ing, environment, medicine [12,26,27]. It communicates vague-
ness by utilizing a limit district of a set not by means of
membership function like fuzzy set. A solution of a Rough
Interval three-level Quadratic Programming Problem was pre-
sented by Saad et al. [32],. Emam et al. [11], exhibited rough
ML-DMP.

Many real-world problems when mathematically modeled
data some of the time can’t be gathered unequivocally [1-4],
[6,7,19]. This uncertainty may occur in a fuzzy or rough
sense or both together [7,12,27]. Since the majority of
researches on BL-DMP have been focused on the determin-
istic version [2,3,5]; however, in reality it is usually difficult
to know precisely the crisp data due to the uncertain nature
of the problems. Thus, lead us to present and architect the
current FRBMNPP which is not presented before in
literatures.

In this paper, we introduce a FRBMNPP. In the proposed
model the objective functions coefficients have a vague nature.
While the set of constrains are formulated as a rough set.
Firstly, the o-cut technique was applied to obtain the
o-(FRBMNPP). Secondly, to tackle the roughness of the
constraints the o-(FRBMNPP) is converted into an upper
approximation model (UAM) and lower approximation model
(LAM). Then we present three methods to solve such problem
as we first solve the UAM if the obtained solution belongs to
the lower approximation set end, otherwise. We have to solve
the LAM. The first method is the KKT transformation which
converts the problem into one level and we solve the resultant
problem. In the other two methods we made further extensions
of the TOPSIS approach. Finally, the fuzzy max-min method
is applied in the first model and the FGP method is utilized
in the second model. An algorithm to clarify the proposed

models of TOPSIS approach, illustrative example and compar-
ison with the KKT method so also is presented.

The paper is organized as follows: Following introduction,
Section 2 present some notions and preliminaries. In the next
section mathematical formulation of FRBMNPP was intro-
duced. Section 4 incorporates the KKT method for the a-
(FRBMNPP). The two models of TOPSIS approach and a
stepwise algorithm are explained in Section 5 and Section 6.
A numerical example and comparisons are worked out in Sec-
tion 7. A discussion on the uncertainty presented in Section 8.
Finally, some conclusions are incorporated in Section 9.

2. Notations

Definition 1 (/16]). a = (a,a,d) is triangular fuzzy number
where « is the smallest value, @y is the main value, @ is the
highest value. The membership function
1z (a;9), ¥ €[0,1](0 < p-(a;9) < &) where ¥ is the maximum
value, a = ay. Then

0, ifa<a, or a>a
—a) "
U~ (a;9) = (2021 ; fa<a<a (1)
@-a9 if ap<a<a

a—ay

Definition 2. The a-level set of the fuzzy parameters a, is an

ordinary set L,(a) for which the degree of its membership
function exceeds the level set o € [0, 1], where [24,26]:

L(a) = {a € R (x) = o}
= {ae [d.a, ) In-() 2 o} 2)

It has been shown that a-cut style is generic suitable to
transact with all sorts of fuzzy mathematical including n” root,
exponential and taking log.

Definition 3. Let ©® be the universal set, R be the equivalence
relation on @®, [0]5 be the set of equivalence class of R, and Q
be a non-empty subset of @. The upper and lower approxi-
mations of the set Q are defined as:

RQ={0€0:[0l,Q~J}
RQ={0€0:[0],CQ}

Q=RO-RQ
If Q7 then set Q is called rough set [28,29].

Definition 4. The collection of all sets having the same upper
and lower approximations is called a rough set, denoted by
(RQ,RQ) [28].

3. Mathematical formulation

FRBMNPP can be presented as follows where the leader and
the follower control the decision vectors x; and x,, respectively
[19,21,22]:
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[1" level (Leader)]

max F(x) = max f;(x
x|

X

where x, solves

[2" level (Follower)]

~ ~ n
&33{/&( X) = \Ezglle X 2 Z/ [] }Nfﬁ,k/

=1,2,---,q, (3)
subject to
x € S(x)

where S(x) is the rough set, S(x) C S(x) C S(x), S(x) and S(x)
are the lower and upper approximation sets for S(x),
respectively.

Sx)={xeR": g(x)(<,=,2)0, i=1,2---;m} # &
(4)

S(x)={x e R":Gi(x)(£,=,>)0, i= o} #
(5)
Also X1 = (X1, %12, -+, X1 ) € R™,

X2 = (Xo1, X2, ,X,) € R?, x=(x1,x2) €ER", n=n+m
and x; denotes any decision variable of the two decision vec-
tors x; and x;. f,j( x),i=1,2, j=1,2,---
polynomial function with fuzzy coefficient, ¢ € g B € R.
g(x) and G(x) are assumed to be at least second differentiable
and continous functions.

Applying the a-cut technique, we obtain the deterministic

form of the objective functions then we transform the o-
(FRBMNPP) into an UAM and LAM as [16,22,35]:

,¢; 1s a nonlinear

UAM :
max 1~71 (x) = max Nfl»(x): i (EU)U - P j=12,--q
—— v k=1 k 2 V] 34y s 41
X X

where x,solves

T 7 n 20\ U Pkt -
Jnax, Fa(x) =nax, (%) =220 <Ck >x [:lxlz/”,jz 1,2, ,q,
X2 X2
subject to
xe€S(x)

(6)

Definition 4. For any feasible x;(x; € S(x)) given by the leader
if x2(xy € S(x)) is the a-Pareto optimal solution of the
BL-DMP, then (xj,x;) is an o-feasible solution of the
o-(FRBMNPP) for the UAM.

Definition 5. A point x* is an a-Pareto optimal solution of the
o-(FRBMNPP) for the UAM if there exist no other a-feasible

U

~ U ~
solution x € S(x) exist, such that (‘fl-’(x*))a < (fll-(x)>M for

~ U
at least one objective function (flj(x)) .
o

Definition 6. x* is called an a-surly Pareto optimal solution if
and only if x*is the «-Pareto optimal solution of the a-
(FRBMNPP) for the UAM and x* € S(x). Otherwise this
solution is called an a-possibly Pareto optimal solution.

LAM :

~ ~ ~1j Un Iy )
\maX,Fl(x):\maXJ lj(x): ;;I:l(ck)x l:lel/k/7 ]:1727"'7ql
X1 X
where x, solves
max F(x) = max f (x)=>"72 (E2/>Uf[ Pt 212, 0q
—— 24\ k=1\“k Xy IETARRRYY )

o =1
X X2

subject to
x € S(x)

4. KKT method for FRBMNPP

KKT method convert the a-(FRBMNPP) of the UAM and
LAM into an a-multi-objective nonlinear programming prob-
lem «-(MNPP). By replacing the follower problem by its KKT
optimality conditions and appends the obtained system to the
leader’s problem [2,14]. So, the KKT conditions of the fol-
lower problem for the UAM are:

Vs (10, ~ VS aGix) =0

Gi(x) <0, i=1,2-

WGi(x) =0, i=1,2--,m (8)
w>0, i=12---'m

wy € [0, 1], 350wy = 1

where y; is a Lagrange multiplier which is associated with the
inequality constraint G;(x), see [12,14]. Then, the «-(MNPP) of
the UAM can be written as:

max >t wy <} y(Y) ) :

X1

subject to

vaZ—]‘/VZ] (fzj )) V‘fv Z;ml,u: ) =0 (9)
Gi(x)<0, i=1,2--- my,

wGi(x)=0, i=1,2--- my,

w>0 i=12---,m

wi,wy € [0, 1], 300wy =1, 2wy =1

5. TOPSIS for FRBMNPP

In this section, we exhibit two models for solving FRBMNPP
based on the concept of TOPSIS [36],. By obtaining the
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o-(FRBMNPP) then we transform the problem into an UAM
and LAM. Firstly, we solve the UAM by two models of TOP-
SIS approach if the solution is a-surely Pareto optimal we stop
otherwise we solve the LAM.

5.1. The TOPSIS methodology for the leader problem of UAM

The TOPSIS approach [36], is utilized to solve the following
leader problem:

> v no (Y B .

\max,(flj(x))x = k:l(ck>a Il;[lxt , J=12q

X1
subject to
x € S(x)

(10)

Architecting the bi-objective distance functions of Lai et al.

[18], for the leader problem:

1
SN\ Urn B 1P P

. F f 1
min dﬁ” (x) = { ﬂ’p [” (f, f)/l, = :| }

1
r A\ Uy /‘1/// ?
, NISE (N a . p . ("k)1 Xy (11)
max dp (x) = { _f'lVlj[ R ,

subject to
x € 8(x)
U
where  f}; = max (fl/( )) , is the individual PIS,

xeS(x)
U

fi; = min (fl/( )) , is the individual NIS and 7y, is the
xeS(x) *

welghts of the objectives. Postulate that the membership func-
tions pf’S(x) and p¥'S(x) of model (11) are linear between

() (&) () w9 =)

(4
( dPlS*) — min dPls"( X) & ( dﬁls")_
(

= max dﬁ'sr(x) (12)

xeS(x xeS(x)

= mind¥' (x)  (13)

x€S(x)

dN[S’(> — max les*’ (x) & ( dl]i/IS"_)7

x€S(x)
Thus .uPIS(x) = W st (x) and ‘uN[S( ) =
P
obtained as [3,4,0]:

H st (x) can be

1 if 25" (x) < (dﬁ’sf)*
d.;:ISF T d;:ISF ) . S\ * PISt S\~
S (x) = ((dg,gr))fw if (d£m> <d (x) < <d§m>
0 if (d’;’SFy <d"(x)
(14)
| it & () > ()
d.}\;‘lSF('\)i t/‘,,WSF C A\~ NIST N
,ngls(x) = W lf (dgls ) S d[) (x) S (ngS )
0 it dy (v < (4)
(15)

In the first model, we apply the fuzzy max-min decision
model [3,6,36]. Thus model (11) is equivalent to the following
Tchebycheff model:

Model (1) :

max A

subject to

~1j /}( r
fi = S (&) T
fi =1y

(1— ( dP/Sf )

> ()

Z‘Il 'Vp

1
~lj n /}I/// ’
D 1(‘%) =1%1 _f1/

2 fo=t
(- 1)(4,”,’“)7 > ;L(dfi’“)* (16)
x € S(x)

The second introduced model is based on FGP method,
[7,20] to solve the conflicting bi-objective distance functions
of the leader problem as follows:

Model (II) :

. + .
min Z = DYS" 4 DS

subject to

() o [ )
() (@)

+ DEIST _ pPIst — (17)

(@)

1

J P
(Ve i ?
91 ,yﬁ_ k=1 ((/\’) a5 _
j=1/1j ity

( dz'lsF ) o ( dglsf ) -

_ [)gISJr =1

+ Dng’

x € S(x)

Since, the essential idea of the BL-DMP is that the leader
sets his decisions and then asks the follower for its optima
[3L,[5-7]. In this way, to stay away from vast computational
efforts because of, models exhibited in [6,7]. The reason behind
of setting the decision variables of the leader as restricting con-
straints to show the efficiency of the proposed fuzzy max-min
method and FGP method ie. the UAM for the a-
(FRBMNPP) has an o-feasible solution even if we don’t pro-
vide any leeway for the leader decision variables.
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5.2. The TOPSIS models for FRBMNPP

To obtain a compromise solution to FRBMNPP using the two
proposed models of TOPSIS approach, we modify the distance

family, dﬁ’sg and d,]Y’SB, as follows:

2 f p/ <Zﬂ) n P N
PIS? ai k =1
w0 =3 [,
i~ Jij

i=1

NISE
dS'

MN

i=1 Z Vp f:jff;

where y;,i=1,2,j=1,2,---,¢; are the relative importance of

~ U
the objectives. And also, .f;j:xeg(x)max(fy(x)) ,

~ U i
Sy =x € S@min(f,()) i=1,2j=1,2q,
tively. Then the a-(FRBMNPP) model (6) transferred into
the distance functions [6,34]:

respec-

T ”,'7 v n Bijt ’
. dp,gs( ) a S =2k (ck L=
mind,” (x)= vl
R D) DI

i=1

&)

1
~’/ v n ikl k ’ r
2 H / l
maxd}\,”sg Z Zq’ 7 ( ) o ! (20)
pe Ji =ty
subject to
x € S(x)

Thus we construct the membership functions p JP,SB( x) and

M(I‘,\,”SB( x) [3,6,18] as:
( dPISE) *
( d;ISB ) T dngB ()

B\ * PISB _
Gty e ) < <)

0 if (d§’53)7

1 it d"%" (x

Hpiss (X) =
<

<dp(x)
(21)

1 if @V (x) > (dﬁ,”s”)*
a'?,’lss (x)— (d.;’ISB ) ) .
() =)

0 if ¥ (x) < (df!’SB)_

ﬂd:iylsﬁ (x)= »

(22)

r <d§ISB)7 < lesB (X) < (dglsb)*

So, we can formulate the final fuzzy max-min model (I) and
FGP model (II), respectively as follows:

Model (1) :

max o

subjectto

v LN

(1- (dl’uf?) > Zth » f P f;(_/z; 1=1%1

> —5(d$"”>*

N ) IR

2 . 21:1(2;)“ 7:1xf”k/ —Jy

O

+e-1(a) = 5(d,¥’5”)* (23)
x € S(x)
X =X

The second proposed model is based on FGP approach,
follows as:

Model (II) :

. + -
min Z = D" 4 DYIS

subjectto

1
X U P 7
_ " [~ n Bijkl L4
dPISB - 22 4i P Ji=2 e ("f)m H/:r‘/
P i=1 j=17ij ity
*

( dﬁ'sﬂ> -

- Dy =1

+ DZIS’

i\ B 7 »
Zz q; i I\'l:l("k)n Ny _
i=1 =170 iy
B\ * B\ ~
Y-

+ DY — ISt = (24)
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6. The TOPSIS algorithm for FRBMNPP [Leader]

The algorithm for the proposed two TOPSIS models for

]N‘ x) = c1x3 4 ex) + ¢,
FRBMNPP follows as: X;.max ll( ) 1 S 3

)

flz(x) = 23)6’1—) + Z4X1X2

where x,, solves

Step 1: Ask the leader for an agreeable value of «.
Step 2: Formulate the «-(FRBMNPP) for the UAM. [Follower]
Step 3: Calculate the individual minimum and
maximum values for the objective functions. ~ <y~ 5
Step 4: Construct the PIS & NIS payoff tables of the & max S (%) = caxi + crxix;,
leader problem Eq. (10). 2 } (x) = 34l ’
Step 5: Set up dg’SF(x) and déws” (x) according to Eq. 2v i 2
(11). .
Step 6: Elicit the membership functions u s (x) and subject to
Hyuse (x) Egs. (14) and (15). x € S(x)
Step 7: If the leader considers model (I) for solving 21 < 36
the a-(FRBMNPP), then go to Step 8; X +x3 <16 1 <25*5
otherwise he decide model (II), go to Step 9. X1 > 9.9,
Step 8: Formulate and solve the model (I), Eq. (16), Xxt+xm <5 CSk)C X, < 5.5
for the leader a-(FRBMNPP) then go to Step X1, X >0 T
10. X1,x2 >0
Step 9: Formulate and solve the model (II), Eq. (17), 0 x <5,
for the leader a-(FRBMNPP) then go to Step (xz ~25)/11 5<x<6
10. : - ’
Step 10: Set xy = xj, = (xflvxfzv o vme)' o ” : 2 o
Step 11: Construct the PIS & NIS payoff tables of the (64 —x7)/28 6<x<8,
a-(FRBMNPP) Eq. (6). 0 x> 8,
Step 12: Set up % I (x) and & I (x) according to Eq. 0 x <2,
(1??)4&(19), respectively. (x2 _ 4)/5 2< x <3,
Step 13: Elicit Hypiss (x) and H st (x) Eq. (21) &(22). 1 3
2 2 ~ = X =3,
Step 14: Formulate and solve the model (I), Eq. (23), K 5
for the UAM of the «-(FRBMNPP), go to (25-x%)/16 3<x<S5,
Step 16. 0 x>,
Step 15: Formulate and solve the model (II), Eq. (24)
for the UAM of the a-(FRBMNPP). 0 x < 3,
Step 16: If the compromise solution belongs to S(x) , 5
then go to Step 17, else go to Step 18. (¥ =9)/T 3<x<4
Step 17: If the leader satisfied with the solution, then o- Mz, = 1 x =4,
surely Pareto optimal solution obtained go to (36 — x2)/20 4<x<6,
Step 20, else go to Step 19.
Step 18: Solve the o-(FRBMNPP) for the LAM. If the 0 x>0,
leader satisfied with the solution, then o- 0 x < 0.5,
possibly Pareto optimal solution obtained go (x2 _ 0.25)/0'75 05<x<1,
to Step 20, else go to Step 19.
Step 19: Modify the value of o, and go to Step 2. ke = 1 x=1,
Step 20: End. (4-x%)/3 I <x<2,
0 x> 2,

For an agreeable value of let « = 0.2 then the FRBMNPP

L. . would be transferred into the following a-(FRBMNPP):
7. Numerical illustration

[Leader]
Consider the following FRBMNPP where fuzziness in the
objective functions and the set of constraint modeled as a o
rough environment: (f“) (x) = V64 — 28ax? + /25 — 16ax3 + /36 — 200,

~ U
(flz) (x) = V36 — 200x3 + V4 — 3ax1x,
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where x,, solves

[Follower]

~ U
<f21> (x) = V4 — 3ax? + /25 — 16ax,x3,

Xy max ,
—— U

subject to

x € S(x)

X +x3<16
xX1+x <5 »CSkx)C

X1, x>0

We solve the FRBMNPP using the KKT method. First, the
UAM of the «-(FRBMNPP), the KKT condition applied to
obtain the single level problem as:

maxwy (7.64x7 4+ 4.67x3 + 5.66) + (1 — w;)(5.66x7 + 1.84xx,)

subject to

w2(9.34x1x2) + (1 — wa)(11.31x2) + 2,0 + pty — 4y =0

1 (x] +x3 —36) =0

W(xy —5.5)=0
ps(x1) =0
Ha(x2) =0

X+ x5 < 36
x; <55
X, < 5.5
x>0

XZZO

(}22) (x) = V64 — 280x3 + /36 — 200x3

x4+ x3 <36

His Hos B3 Ky > 07 wi € [07 1]7 wy € [07 1]

Using Lingo 18, the solution of the KKT method for the
UAM of thea-(FRBMNPP), is x* = (0, 5.5), the objective val-
ues for different values of Alpha are given in Table 6.

Solution using the two models of TOPSIS approach. The
individual maximum and minimum values are summarized in
Table 1. The PIS & NIS payoff tables for the leader problem
are given in Tables 2 and 3 respectively.

Assume that y,; =y,, = 0.5, then the equation of d;”sr(x)

and dﬁISF(x) when p =2 are:

2 [ 1013.74—(7.64x3+4.67x3+5.66 ) Ak
ors? (0.5) 1013.74-5.66
& (x) = i
5 195.48—(5.66x2+1.84x1xz)
+(0.5) [ 195280 }
1
,\ )
2 | (7.64x3+4.67x3+5.66) —5.66
- (0-5) { oI 74566
" (x) =
: 2 [ (5:66x3+1.84x1x,) -0
+(0.5)" " —553-0

" (x) = {246 10 7[1013.74 = (£, ()55)

1
2

+6.545 1019548 — (/,5(x)1s]}

A (x) = {2.46 #1077 [(fy (x))8, — 5.66]°
654510 (1 (e))C — 0]}

Thus we compute max d;’sf(x) =0.7070,
min 7™’ (x) = 0.296, and max &)™ (x) = 0.521,
mind? (x) =0. Then we have d =(0.296,0.521) and
d} =(0.7070,0), therefore, ,udf,sr(x) and ud;\,,sr(x) can be

obtained as:
fsr (X) = 1.72 — 243 5 d5™" (x)
2
Hpust (X) = 1.92 % déwSF(x)
The proposed two TOPSIS models of the leader UAM:

Model (I) Fuzzy max—min method

Model (IT) FGP method

max A
subject to
1.72 — 243 % d5"" (x) > )
192 % &)™ (x) > 4
X} +x3 <36
X1 < 5.5
X2 S 55
x1,x2 >0, A€[0,1]

min Z = D" 4 pNIS
subject to
1.72 — 2.43 % d™" (x) + DP'S” — DPIS™ — 1
1.92 % &' (x) + DYIS” — DY¥IS" = |
X} +x3 <36
X1 < 5.5
X2 f 5.5
x1,% >0, DS DI DYIS" pNIS™ > ),

2 =092, x*=(5.051,3.239).

x* = (5.4999,2.398).
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Table 1 Individual maximum, minimum values.
(fn(x))gz (flz(x))gz (le(x))gz (fzz(x))gz
max(/){j(x))é/z 1013.74 195.48 832.63 1442.32
min(fkj(x))gz 5.66 0 0 0
Table 2 PIS payoff table of the leader.
(f11())55 (f12())55 X1 *2
max (f”(x))gz 1013.74* - 5.5 5.5
max (ﬁz(x))éjz 301.17 195.48* 5.5 2.398
= (f1./}2) = (1013.74;195.48).
241
(0 25)2 1013.74— (7.64x2+4.67x3+5.66) )

Table 3 NIS payoff table of the leader. ’ 1013.74-5.66

) ) A N +(025)? [195 19548 (36061 8401 }

o * B
mm(fll(x))(gz >-66 0 0 0 & (x) =
3 f 32.63— (184334467313
min(fp(x))y 1188 0 o u (0257 [* 26 (184 d) }
F = (ffl,ffz) = (5.66,0).
2 [ 144232 (7.64x}+5.66:2 )
O e ]

Using Lingo 18, the compromise solution of the leader UAM
is x* = (5.051,3.239). for model (I) and x* = (5.4999,2.398)

for model (II). Tables 4 and 5 show the PIS and NIS payoff

tables for the follower problem.

Assume that y,; = 0.25, then the equation of d[f[sﬁ(x) and

dg’sﬁ (x) when p =2 are:

Table 4 PIS payoff table of the follower.

(1(*))o2 (F2(*))02 i 2
max(fy; (x))2 832.63" 1442.32 5.5 5.5
max(f ()Y, 832.63 1442.32° 5.5 5.5
F' = (f31,/5) = (832.63;1442.32).
Table 5 NIS payoff table of the follower.

(1 (%))62 (F (%)) X -
miﬂ(le(x))gz 0" 0 0 0
min(fp(0)s, 0 U 0 0

F = (fZIVfEZ) =(0,0).

" (x) =

& (x) =

" (x) =

2
7.64x3+4.67x3+5.66 ) —5.66
1013.74-5.66

(0.25)° {(

(5:66x3+1.84x1x2) 0 ?
{025 |

832.63-0

2 5 2
Hoasy [

2
7.64x3+5.66x3) 0
1442.32-0

+(0.25)? {(

6.15 % 10°8[1013.74 — (f;, (x))%,]
+1.64 % 107°[195.48 — (£,(x))%,]”
195 107 [832.63 — (i (x)),]°

+3% 1075[1442.32 — (fn (x))%]”

o=

6.15%10°° [(ﬂl(x))(l;z - 5'66}2
+1.64 % 107° [(fu(x))gz - 0]2
+9 % 107 [(fy (x))gy — 0}2

+3%107° [(1{22("7))({)]2 - 0}2
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Table 6 Comparison between the FGP method, Fuzzy max- min method and KKT method for the UAM.
o FGP method Fuzzy max-min method KKT method
%=0 fi = 316.93 fi1 = 38291 fi, = 837.875

fin =207.86 fio = 1848 fa=0

fo = 218.62 £ = 319.18 £y =0

fop = 1365.36 for = 1083.36 fon = 1815

(x1,x2) = (5.4998,2.397) (x1,x2) = (5.032,3.267) (x1,x2) = (0,5.5)
0 =02 fi1 = 298.77 £, =359.11 £ = 782.47

fin = 195.17 fip = 174.49 fia=0

for = 199.68 for = 29425 £ =0

fon = 1302.77 for = 1043.86 fon = 171.12

(x1,x2) = (5.4999,2.368) (x1,x2) = (5.05,3.238) (x1,x2)= (0, 5.5)
o=0.4 S =285.1 S =337.54 S =722.829

fi1» =181.73 fi» =162.14 fio=

fo1 =188 S =271.37 f1=0

S = 1235.68 f>2=990.8 S5, = 160.068

(x1,x2) = (5.493,2.411) (x1,x2) = (5.048,3.243) (x1,x2) = (0,5.5)
«=0.5 fi1 = 730.57 fil =731.18 fi1 = 690.57

fia =49.53 fia =50.13 fa=0

for = 305.43 for = 307.81 for =

for = 249.46 for = 251.64 for = 154.28

(x1,x2) = (2379,5.5) (x1,3x2) = (2397,5.5) (x1,x2) = (0,5.5)
%= 0.6 fiy = 42295 fi = 307.28 fi, = 657.802

fin = 116.18 fin=1513 fa=0

for = 324.1 for = 238.12 S =0

fon = 623.58 Frr = 960.24 fry = 148.194

(xl,xz) = (4275421) (XI,XZ) = (517 316) (xl,Xz) = (07 55)
% =038 fi1 = 247.58 fir = 276.72 fi) = 585.595

fio=151.82 fia = 13876 fo=0

£ = 148.31 foy = 202.87 f1=0

fop = 1098.78 fop =926.16 fon = 135.282

(x1,x2) = (5.5,2.396) (x1,X2) = (5.156,3.068) (x1,x2) = (0,5.5)
a=1 fi1 = 226.8 £, = 245.26 £ = 503.125

fia = 13418 fin=12432 fi2=0

for = 125.05 for = 164.53 L=

for = 1021.23 for = 887.04 fon =121

(x1,x2) = (5.5,2.397)

(x1,%,) = (5.217,2.962)

(X],Xz) = (07 55)

So, maxd™ (x) =0.4999, mind?™>’(x) =0.235, and
max df’sﬂ(x) = 0.35, min dg"SB (x)=0. Thus we have
& =(0.235,0.35) and & = (0.4999,0), 50,
Hisn (X)andp vz (x) can be obtained as:

fpss (x) = 1.88 — 3.775 % ™ (x)

o (X) = 2.86 % )™ (x)
The proposed two TOPSIS models for FRBMNPP:

Model (I) Fuzzy max-min method

Model (II) FGP method

max o
subject to
172 =243 % d5 (x) > 6
1925 " (x) > &
X} +x3 <36
x; = 5.051
X2 < 5.5
X1,x3 > 0,0 € [O, 1]

minZ = D§S™ 4 DYIS”
subject to
1.88 — 3.775 % d™" (x) + DEIS” — DPIS" — |
2.86 Y™’ (x) + DY — DYIS* = 1
X} +x3 <36
x1 = 5.4999
X, < 5.5

PIS™ PISt NIS™ NIST
DB ) DB ) DB ) DB 2 07

5 =0.896, x* = (5.051,3.238).

x* = (5.4999,2.368).
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Table 7 Comparison between the FGP method, Fuzzy max- min method and KKT method for the LAM.

o FGP method Fuzzy max-min method KKT method
o=0 S =132.16 S =326 S =326

Ji2 =98.56 fu=0 S2=0

S =38.42 Sn=0 S =

frn =496.7 o =96 S =96

(X],Xz) = (3954,06016) (xl,xz) = (0,4) (X],Xz) = (0,4)
o0=02 S = 126.33 fu = 12697 f11 = 304.476

fi2 =92.67 S =92.57 fia=0

fo1 =33.77 S =321 f1=0

frn =477.36 frr = 482.56 f2» =90.51

(x1,x2) = (3.964,0.5125) (x1,x2) = (3.98,0.399) (x1,x2) = (0,4)
o=04 S =120.1 fi1 = 120.63 S = 281.309

Ji2 = 86.68 fip =86.13 Sn=0

fo1 = 31.61 fo1 =28.57 f1=0

S =453.14 Sor = 458.99 for = 84.664

(x1,x2) = (3.96,0.564) (x1,x2) = (3.98,0.3518) (x1,x2) = (0,4)
«=0.5 fi1 = 118.16 fip = 117.53 fi1 = 268.78

f1» = 81.86 fi» =83.13 fia=0

o1 =253 fo1 =26.99 f1=0

frn =452.15 frr =448 f»» =81.6

(x1,x2) = (3.999,0.0489) (x1,x2) = (3.985,0.3405) (x1,x2) = (0,4)
o=0.6 S =113.45 S =114.19 Jf11 = 256.053

J12 =80.13 fi2 =79.82 Sn=0

S =211 S =2525 S =0

frn =429.31 frr = 435.62 frn = 78.384

(x1,x2) = (3.964,0.535) (x1,x2) = (3.986,0.334) (x1,x2) = (0,4)
o=0.8 fi1 = 106.82 fu =107.62 f11 =228.015

fia = 72.82 fir=17193 fia=0

for =22.27 fo1 =20.26 1 =0

frn =407.08 frn =412.52 S =T71.554

(x1,x2) = (3.979,0.4093) (x1,x2) = (3.999,0.0894) (x1,x2) = (0,4)
o=1 fii =99.12 fii =99.37 S =196

fio =64.93 fio = 6491 fa=0

o1 =1791 S =17.39 f1=0

S =378.11 ) = 379.92 foy = 64

(x1,x2) = (3.977,0.4198) (x1,x2) = (3.984,0.3572) (x1,x2) = (0,4)

Using Lingo

the compromise

solution of the o-

8. Discussion

(FRBMNPP) UAM is x* = (5.051,3.238) for model (I) and
x* = (5.4999,2.368) for model (II). The objective values for
different Alpha are given in Table 6.

Since the obtained solution of the KKT method and the
two models of TOPSIS approach for the UAM x* ¢ S(x). So
we have to solve the LAM by using the previous methods
for different values of « thus the solution obtained is an o-
possibly feasible and an a-possibly Pareto optimal solution.
The results for the UAM and LAM were listed in Tables 6
and 7 respectively.

The results of the proposed FGP method, fuzzy max-min
method and the KKT method, in Tables 6 and 7, for solving
the UAM and LAM, respectively of the FRBMNPP indicate
that the FGP method and fuzzy max-min method are close
to one another and preferred than the KKT method.

The a-level and Roughness

1. The a-level: A specific a-level is adopted in the proposed
methods to represent the confidence level on DMs’ subjec-
tive uncertainty to specify parameter values in the
FRBMNPP. For simplification, the a-level for all parame-
ters in the solution process are considered to be the same.
However, these may be limitations in practical applications.
The determination of a-levels for various DMs’ subjective
uncertainties could be different in the real world, due to
DMs’ different consideration of the corresponding prob-
lems. Thus, we solve the UAM and LAM of the a-
(FRBMNPP) for different o-levels.
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2. Roughness: in our proposed FRBMNPP we deal with
uncertainty by giving two boundary regions for the set of
constrains based on RST. Thus after formulating the o-
(FRBMNPP) we transform the problem into an UAM
and LAM and solve for different values of o.

9. Conclusion

In this study, we architect FRBMNPP, moreover a strategy for
tackling such problem is suggested. Firstly, we formulate thea-
(FRBMNPP) then we obtain the UAM and LAM. The KKT
method and two models of TOPSIS approach based on Fuzzy
max-min method and FGP method were applied to solve this
problem. We suggest a strategy to solve such problem by firstly
solve the UAM is its solution belongs to the lower approxima-
tion set then the solution is reached otherwise we solve the
LAM. We apply this strategy for different values of o to ensure
the validation of the proposed methods and algorithm. A
numerical illustration was presented to clarify the efficiency
of the proposed methods.

Several open points for research in the area of multi-level
optimization, from our point of view, to be studied in the
future. Some of these points are given in the following:

1. Fuzzy rough fractional ML-DMP should be put on spot via
interactive algorithms.

2. Practical fuzzy rough BL-DMP is a vital field in the future
researches.

Declaration of Competing Interest

The authors declare that they have no competing interests.

References

[1] H. AbdAlhakim, O.E. Emam, A.A. Abd El-Mageed,
Architecting a fully fuzzy information model for multi-level
quadratically constrained quadratic programming problem,
OPS 56 (2019) 367-389.

[2] G.B. Allende, G. Still, Solving bi-level programs with the KKT-
approach, Math. Prog. 138 (2013) 309-332.

[3] M.A. Abo-Sinna, A.H. Amer, TOPSIS approach for solving bi-
level non-linear fractional MODM Problems, J. Adv. Math. 13
(2018) 7353-7370.

[4] M.A. Abo-Sinna, A.H. Amer, Extensions of TOPSIS for multi-
objective large-scale nonlinear programming problems, Appl.
Math. Mod. 162 (2000) 243-256.

[5] S.R. Arora, R. Gupta, interactive fuzzy goal programming
approach for bi-level programming problem, Eur. J. Oper. Res.
194 (2) (2009) 368-376.

[6] I.LA. Baky, M.A. Abo-Sinna, TOPSIS for bi-level MODM
problems, Appl. Math. Mod. 37 (2013) 1004-1015.

[7] I.LA. Baky, M.H. Eid, M.A. Elsayed, Bi-level multi-objective
programming problem with fuzzy demands: a fuzzy goal
programming algorithm, OPS 51 (2) (2014) 280-296.

[8] I.A. Baky, M.A. Elsayed, Bi-level multi-objective programming
problems with fuzzy parameters: modified TOPSIS approach,
Int. J. Man. Fuz. Syst. 2 (5) (2014) 38-50.

[9] L.H. Chen, H.H. Chen, A two-phase fuzzy approach for solving
multi-level decision-making problems, Know. Bas. Syst. 76
(2015) 189-199.

[10] C.T. Chen, Extensions of the TOPSIS for group decision-
making under fuzzy environment, Fuz. St. Syst. 114 (2000) 1-9.

[11] O.E. Emam, M. El-Araby, M.A. Belal, On rough multi-level
linear programming problem, Info. Sci. Let. 4 (1) (2015) 41-49.

[12] M.A. Elsisy, M.S. Osman, M.H. Eid, On duality of multi-
objective rough convex programming problems, J. Appl
Comput. Math. 4 (263) (2015).

[13] M.A. Elsisy, M.H. Eid, M.S. Osman, Qualitative analysis of
basic notions in parametric rough convex programming
(parameters in the objective function and feasible region is a
rough set), OPS 54 (4) (2017) 724-734.

[14] B. El-Sobky, Y. Abo-Elnaga, A penalty method with trust-
region mechanism for nonlinear bi-level optimization problem,
J. Comput. Appl. Math. 340 (2018) 360-374.

[15] M. Habibpoor, A new method for solving linear bi-level multi-
objective multi-follower programming problem, Int. J. Appl.
Oper. Res. 6 (4) (2016) 13-26.

[16] M.G. Iskander, using different dominance criteria in stochastic
fuzzy linear multi-objective programming: a case of fuzzy
weighted objective function, Math. Comput. Mod. 37 (2003)
167-176.

[17] K. Lachhwani, On solving multi-level multi objective linear
programming problems through fuzzy goal programming
approach, OPS 51 (4) (2014) 624-637.

[18] Y.J. Lai, T.J. Liu, C.L. Hwang, TOPSIS for MODM, Eur. J.
Oper. Res. 76 (1994) 486-500.

[19] J. Lu, J. Han, Y. Hu, G. Zhang, Multilevel decision-making: a
survey, Info. Sci. 346 (2016) 463-487.

[20] R.H. Mohamed, The relationship between goal programming
and fuzzy programming, Fuz. S. Syst. 89 (1997) 215-222.

[21] S. Nayak, A.K. Ojha, An approach of fuzzy and TOPSIS to bi-
level multi-objective nonlinear fractional programming problem,
Softw. Comput. 23 (14) (2019) 5605-5618.

[22] M.S. Osman, O.E. Emam, M.A. El Sayed, Stochastic fuzzy
multi-level multi-objective fractional programming problem: a
FGP approach, OPS 54 (4) (2017) 816-840.

[23] M.S. Osman, O.E. Emam, M.A. El Sayed, On parametric multi-
level multi-objective fractional programming problems with
fuzziness in the constraints, Brit. J. Math. Comput. Sci. 18 (5)
(2016) 1-19.

[24] M.S. Osman, O.E. Emam, M.A. El Sayed, Solving multi-level
multi-objective fractional programming problems with fuzzy
demands via FGP approach, Int. J. Appl. Comput. Math. 4 (1)
(2018) 4-41.

[25] M..S. Osman, O.E. Emam, M.A. El Sayed, Interactive approach
for multi-level multi-objective fractional programming problems
with fuzzy parameters, Ben.-Su. J. Bas. Appl. Sci. 7 (1) (2018)
139-149.

[26] M.S. Osman, A.A. Elazeem, M.A. Elsisy, M.M. Rashwan,
Duality in the fuzzy-parametric space for fuzzy-parametric
nonlinear programming problem, OPS 55 (3-4) (2018) 662-676.

[27] S. Pramanik, T.K. Roy, Fuzzy goal programming approach to
multi-level programming problems, Eur. J. Oper. Res. 176 (2)
(2007) 1151-1166.

[28] Z. Pawlak, Rough sets, Int. J. Comput. Info. Sci. 11 (5) (1982)
341-356.

[29] Z. Pawlak, Rough sets, rough relations and rough functions,
Fund. Info. 27 (1996) 103—108.

[30] A. Ren, A novel method for solving the fully fuzzy bi-level linear
programming problem, Math. Prob. Eng. 2 (2015) 1-11.

[31] N. Ranarahu, J.K. Dash, S. Acharya, Multi-objective bi-level
fuzzy probabilistic programming problem, OPS 54 (3) (2017)
475-504.

[32] O. Saad, O.E. Emam, M.M. Sleem, On the solution of a rough
interval three-level quadratic programming problem, Brit J.
Math. Comput. Sci. 5 (3) (2015) 349-366.

[33] M. Sakawa, I. Nishizaki, Y. Uemura, Interactive fuzzy
programming for two-level linear fractional programming


http://refhub.elsevier.com/S1110-0168(19)30142-5/h0005
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0005
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0005
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0005
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0010
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0010
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0015
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0015
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0015
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0020
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0020
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0020
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0025
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0025
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0025
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0030
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0030
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0035
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0035
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0035
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0040
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0040
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0040
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0045
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0045
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0045
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0050
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0050
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0055
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0055
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0060
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0060
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0060
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0065
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0065
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0065
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0065
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0070
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0070
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0070
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0075
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0075
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0075
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0080
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0080
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0080
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0080
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0085
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0085
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0085
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0090
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0090
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0095
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0095
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0100
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0100
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0105
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0105
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0105
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0110
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0110
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0110
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0115
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0115
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0115
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0115
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0120
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0120
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0120
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0120
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0125
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0125
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0125
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0125
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0130
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0130
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0130
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0135
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0135
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0135
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0140
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0140
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0145
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0145
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0150
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0150
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0155
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0155
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0155
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0160
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0160
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0160
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0165
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0165

1482

M.A. Elsisy, M.A. El Sayed

problems with fuzzy parameters, Fuz. St. Syst. 115 (2000) 93—
103.

[34] E.A. Youness, O.E. Emam, M.S. Hafez, Fuzzy bi-level multi-
objective fractional integer programming, Appl. Math. Info. Sci.
8 (6) (2014) 2857-2863.

[35] M. Sakawa, Fuzzy Sets and Interactive Multi-objective
Optimization, Plenum Press, New York, USA, 1993.

[36] C.L. Hwang, K. Yoon, Multiple Attribute Decision Making:
Methods and Applications, Springer-Verlag, Heidelberg, 1981.


http://refhub.elsevier.com/S1110-0168(19)30142-5/h0165
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0165
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0170
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0170
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0170
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0175
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0175
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0175
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0180
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0180
http://refhub.elsevier.com/S1110-0168(19)30142-5/h0180

	Fuzzy rough bi-level multi-objective nonlinear programming problems
	1 Introduction
	2 Notations
	3 Mathematical formulation
	4 KKT method for FRBMNPP
	5 TOPSIS for FRBMNPP
	5.1 The TOPSIS methodology for the leader problem of UAM
	5.2 The TOPSIS models for FRBMNPP

	6 The TOPSIS algorithm for FRBMNPP
	7 Numerical illustration
	8 Discussion
	9 Conclusion
	Declaration of Competing Interest
	References


